Полная энергетическая автономия или как выжить с солнечными батареями в глубинке (часть 4. Сделано в России)

В России есть вся инфраструктура и собственные средства для построения солнечной электростанции в конкретно взятом хозяйстве. Более того, вся необходимая электроника, да и солнечные батареи производятся у нас самостоятельно и все это отлично работает. После экспериментов с ноунеймом, брендовым европейским китаем и прочей техникой, я решил обратиться к российским разработчикам техники для автономки и на себе испытать эти устройства. Первым попал на тест гибридный инвертор МАП HYBRID v.1 24В: 4.5 кВт , а следом за ним пойдет производительный солнечный MPPT-контроллер.

солнечный MPPT-контроллер

Недаром на главной картинке крупно вынесена надпись «Сделано в России». Все, что Вы увидели на фотографии, действительно сделано в России: солнечные панели изготовлены компанией «Телеком-СТВ», завод которой расположен в г.Зеленоград, аккумуляторы производятся компанией Лиотех и выпускаются в Новосибирской области, а инверторы и солнечные контроллеры производятся в Москве компанией МикроАРТ.

В прошлой части я определился с моделью инвертора и составил список требований, которому должно отвечать устройство:
1. Работа в режиме ИБП
2. Резервирование отдельной фазы питания в доме
3. Подкачка энергии от солнечных батарей в домашнюю сеть для снижения потребления из внешней сети

Именно поэтому я выбрал гибридный инвертор. В принципе, любой мощный бесперебойник справился бы с первыми двумя пунктами, но последний пункт доступен только гибридам и дальше я объясню это на примере МАП SIN HYBRID.
Логика работы девайса такова:
1. Транслируем сквозь себя внешнюю сеть, пока она не выходит за параметры напряжения, заданные пользователем (выше или ниже порога — переключаемся на питание от батарей).
2. Если пользователь подключает приборы, потребляющие больше энергии, чем может предоставить внешняя сеть (задается в настройках контроллера), то инвертор начинает добавлять энергию из аккумуляторов.
3. Если инвертор соединили с солнечным контроллером этого же производителя по шине I2C кабелем, то при потреблении электроэнергии солнечный контроллер сразу знает от инвертора, какая мощность требуется и выдает всю энергию, если она доступна.

Именно последний пункт меня порадовал, поскольку наблюдается прямое взаимодействие двух устройств. Поясню, чем это лучше использования стороннего контроллера, на примере логики их работы.
Любой солнечный контроллер:
1. Если напряжение на аккумуляторе достаточное, обеспечиваем поддерживающий заряд.
Включаем нагрузку
2. Если напряжение на аккумуляторе немного просело, но не критично, ничего не меняем.
3. Если напряжение на аккумуляторе просело сильно — отдаем максимум энергии на заряд
Снимаем нагрузку
4. Если напряжение на аккумуляторе стало выше достаточного, снижаем подачу тока

Солнечный контроллер, работающий в паре с инвертором:
1. Если напряжение на аккумуляторе достаточное, обеспечиваем поддерживающий заряд.
Включаем нагрузку
2. Если инвертор сообщил, что включена нагрузка 500 Вт, выдаем 500 Вт (или сколько могут обеспечить солнечные панели)
Снимаем нагрузку
3. Если инвертор сообщил, что нагрузка снята, снижаем подачу энергии, продолжаем поддерживать заряд аккумулятора

На примере этих двух процессов видно, что солнечный контроллер, работающий независимо, будет работать с запаздыванием, а значит энергия какое-то время будет отбираться от аккумуляторов, вводя их в цикличный режим и снижая ресурс.
Во втором случае, когда инвертор и солнечный контроллер объединены одной шиной, солнечный контроллер выдаст столько энергии, сколько потребляет нагрузка, если это возможно в текущий момент времени. Таким образом сохраняется ресурс аккумулятора. Но к солнечному контроллеру и его испытанию я вернусь в следующем материале, а в этом продолжу работать с инвертором.

Первое подключение

Первым делом его надо подключить. Делается это проще простого, но необхоимо перевести систему с 12В на 24В (старая система строилась на 12В, а новая на 24В — об этом я писал в третьей части). Так как у меня аккумуляторы уже поработали какое-то время и куплены были с разницей в год, необходимо максимально выравнять их характеристики. Для этого нужно выполнить ряд действий
1. Зарядить аккумуляторы стабилизированным напряжением 14.4В в течение нескольких часов
2. Отключить от зарядного устройства и дать им отстояться несколько часов
3. Проверить напряжение на каждом из аккумуляторов, чтобы не было дисбаланса (напряжение должно быть одинаковым или максимально близким, в пределах погрешности измерений).
4. Подключить аккумуляторы последовательно
5. Проверить напряжение
6. Подключить инвертор

Чтобы не было так скучно, весь этот процесс я заснял на видео и снабдил комментариями.


На видео снято только подключение к аккумуляторам. В этом случае, устройство будет работать только на генерацию. Для работы в гибридном режиме его следует подключить к сети и сделать вывод питания для нагрузки. Для этого на задней панели имеется колодка с подписями, чтобы не было необходимости лезть в паспорт устройства. Удобно и понятно:

колодка с подписями

Сервис

В одной из предыдущих частей я писал, как мне пришлось столкнуться с гарантийным сервисом китайского устройства под немецким брендом. Производитель все чинил и высылал назад за свой счет, а мне приходилось оплачивать только отправку в Германию и ждать 3 месяца. С сервисом отечественного производителя мне тоже пришлось столкнуться, так как возникли интересные глюки при подключении к сети (на табло появлялись надписи «выбросы в сети», «высокое напряжение в сети»). Первый звонок в службу поддержки, которая работает в будние дни, привел меня к толковому инженеру, с которым можно общаться терминами, не подбирая нужных слов. Тут я вспомнил техподдержку опсосов и Интернет-провайдеров, когда на первой линии сидят девочки, вечно переадресующие другому оператору, и порадовался грамотному технарю на другой стороне линии. Решить проблему на месте не удалось и меня попросили отправить инвертор в сервис. Когда подвернулся случай, я сам заехал в сервис, отдал устройство и решил подождать. Диагностика и исправление заняли порядка 1.5 часов, а так как других клиентов не наблюдалось, мне удалось разговориться с работниками и узнать массу любопытных фактов, которые напрямую не относятся к моей автономке, поэтому я их напишу в конце статьи.

Вскрытие показало...
Ну какой же тест без вскрытия? Получив исправленный инвертор на руки и заручившись обещанием сохранения гарантии при самостоятельном вскрытии устройства, я отправился домой и приступил.

Инвертор на 4.5 кВт весит 23 кг!!! Главный оценщик сразу занял стратегическое положение:
кот на инверторе

На задней панели устройства основной выключатель, провода, толщиной с палец, для подключения к аккумуляторам и колодка подключения к сети. Да, еще здоровый кулер, который работает по датчику температуры.
задняя панель устройства

Чуть ли не половину пространства занимает тороидальный трансформатор тоже, кстати, российского производства.

тороидальный трансформатор
Низкочастотная технология предусматривает использование больших трансформаторов. Именно поэтому инверторы, изготовленные по этой технологии, легко переносят пиковые нагрузки, обладают возможностью мощного заряда (ведь заряд идёт от сети или генератора, а у них низкая частота 50 Гц). Но за всё надо платить – инверторы по такой технологии больше, тяжелее и стоят дороже высокочастотных инверторов. Диаметр тора 17 см.

<br
/> На предыдущей фотографии хорошо видны радиаторы силовых ключей и связка конденсаторов. Для сохранения температурного режима под нагрузкой, всю электронику обдувает сбоку второй кулер:


Вся управляющая электроника закреплена надежно и я не решился снимать платы, чтобы посмотреть, какой процессор используется. Зато виден уровень пайки smd компонентов. Кстати, изготовление плат также производится в России на Зеленоградском заводе.


Возможности роста
Приятно, что производитель периодически выпускает новые прошивки и они доступны у них на сайте. Частенько учитываются пожелания пользователей. Из текущих плюсов можно отметить возможность резервирования не только одной фазы, как это сделано у меня, но сразу трех. Правда при этом потребуются сразу три инвертора, но при подключении их к одной шине, инверторы будут производить необходимый сдвиг фаз для правильной работы трехфазного оборудования. Согласно информации производителя уже имеются готовые комплекты резервирования или автономного обеспечения 3 фаз с суммарной мощностью 54 кВт (18 кВт х3 фазы). Напомню, что стандартно на дом выделяется 15 кВт (5 кВт x3 фазы).
Что хотелось бы увидеть в дальнейшем? Возможность синхронизации и наращивания мощности одной фазы при использовании двух-трех инверторов разной мощности. То есть сначала приобрести инвертор на 4.5 кВт, если этого не будет хватать, то докупить такой же или мощнее и посадить их на одну фазу, чтобы увеличить потребляемую мощность.

Интересные факты одной строкой

  • Компания МикроАРТ начинала с производства клонов компьютеров ZX Spectrum под марками ATM Turbo и Пентагон
  • Статистика по гарантийному ремонту составляет 1,7% от проданного количества устройств
  • Гидрометцентр России приобрел 5000 инверторов МАП для своих метеостанций
  • Елабужский производитель реанимобилей заказал инверторы МАП для обеспечения работы аппаратуры в авто
  • Корабли, ходящие под флагом Анголы, заказали инверторы МАП для обеспечения работы оборудования на судне


В следующем материале я объединю солнечный контроллер и инвертор в одну сеть и проверю возможность подкачки в домашнюю сеть от солнечных батарей.
0 комментариев
Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.